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ABSTRACT
Real-time crowdsourcing has made it possible to solve prob-
lems that are beyond the scope of artificial intelligence (AI)
within a matter of seconds, rather than hours or days with
traditional crowdsourcing techniques. While this has led to an
increase in the potential application domains of crowdsourcing
and human computation, problems that require machine-level
speeds—on the order of milliseconds, not seconds—have re-
mained out of reach because of the fundamental bounds of
human perception and response time. In this paper, we demon-
strate that it is possible to exceed these bounds by combining
human and machine intelligence. We introduce the look-ahead
approach, a hybrid intelligence workflow that enables instan-
taneous crowdsourcing systems (i.e., those that can return
crowd responses within mere milliseconds). The look-ahead
approach works by exploring possible future states that may be
encountered within a short time horizon (e.g., a few seconds
into the future) and prefetching crowd worker responses to
these states. We validate the efficacy and explore the limita-
tions of our approach on the Bolt system, which consists of
an arcade-style game (Lightning Dodger) that we formally
model as a Markov Decision Process (MDP). When the MDP
reward function is unspecified—as in many real-world tasks—
the look-ahead approach enables just-in-time (JIT) training of
the agent’s policy function. Through a series of crowd worker
experiments, we demonstrate that the look-ahead approach
can outperform the fastest individual worker by approximately
two orders of magnitude. Our work opens new avenues for
hybrid intelligence systems that are as smart as people, but
also far faster than humanly possible.
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Figure 1. The look-ahead approach prefetches crowd worker responses
to possible future states based on the current state and the agent’s tran-
sition function. Each possible future state is prioritized by the likelihood
of encountering it in the near future. Each crowd worker “covers” as
much of the future state space as they can within a short time horizon.

INTRODUCTION
In the past decade, some of the largest advances in the capa-
bilities of crowd-powered systems have come from significant
decreases in latency. A task initially requiring hours or days
could later be completed in minutes [4], and eventually sec-
onds [15, 13, 3]. With each advance in latency reduction, it
became feasible to solve entirely new types of problems using
crowdsourcing and human computation. However, throughout
all of these advances, one fundamental constraint held true:
system latency was lower-bounded by how quickly a worker
could complete their task upon arrival. This paper introduces
a hybrid intelligence approach that aims to break this speed
barrier and demonstrates that, for problems that can be mod-
eled as MDPs, we can lower overall system response latency
to just a couple of milliseconds.

Crowds in Two Milliseconds
To achieve this latency reduction, we leverage continuous real-
time crowdsourcing, which keeps workers engaged throughout
an ongoing task to get responses as quickly as half a sec-
ond [15, 9], and introduce the look-ahead approach, which
elicits worker responses to states that may be encountered in



the near future. In this way, the look-ahead approach is akin
to prefetching in OS-level memory management [16], allow-
ing us to “teach” the computer what to do in a specific state
immediately before it is encountered. More formally, this can
be thought of as just-in-time (JIT) training of an MDP agent’s
policy (i.e., the function that determines which action the agent
should take in response to a given state). Typically, an optimal
(or near-optimal) policy is learned over repeated game trials,
but JIT policy training elicits and aggregates crowd worker
responses to generate a policy on-the-fly. This avoids the need
for trial-and-error learning, which may not be possible in crit-
ical real-world control settings, such as autonomous vehicle
navigation [1]. When a given state is encountered, the com-
puter “instantaneously” returns the cached policy response—a
process that only takes a couple of milliseconds.

Overview
Our hybrid intelligence approach opens a new frontier for
crowd-powered systems, with potential applications to real-
world problems that require human responses at machine-level
speeds. In short, this paper contributes the following:

• The idea of instantaneous crowdsourcing, a new class of
crowdsourcing system that delivers human responses at
machine-level speeds.

• The first instantaneous crowdsourcing workflow, the look-
ahead approach, enabling just-in-time training of an agent’s
policy by prefetching responses to possible future states.

• Bolt, an instantaneous crowdsourcing system for empirically
evaluating just-in-time policy training using the look-ahead
approach on the Lightning Dodger testbed environment.

BACKGROUND AND RELATED WORK
The look-ahead approach builds most directly upon the liter-
ature in prefetching and recruiting, real-time crowdsourcing,
and hybrid intelligence workflows.

Prefetching and Recruiting
Our approach is analogous to cache prefetching in OS-level
memory management. Prefetching achieves significant on-
average latency reductions by moving operation results from
main memory to the cache—not because these results are
needed immediately, but because they are expected to be
needed in the near future [16]. Similarly, the look-ahead
approach achieves a two order of magnitude latency reduction
by prefetching and caching crowd worker responses in ad-
vance. Within the crowdsourcing literature, significant latency
reductions have been achieved by recruiting workers to wait
in a retainer prior to task arrival [3, 4]. The retainer model
can also be thought of as a form of prefetching where workers
are prefetched, or “pre-recruited,” before they are needed. Pre-
recruiting workers makes them available to start a task as soon
as the end-user request is made, but their responses will still
be delayed by the time it takes to complete the task itself. In
this paper, we introduce the idea of having workers complete
the task ahead of time—before the responses are needed—so
that the output can be returned to the end-user in an instant.

Figure 2. Look-ahead Approach: During each round, workers (w) first
respond to as many possible future states ( f p) as they can (the prediction
phase). Then, their responses are cached and later returned in response
to subsequently encountered states (the execution phase).

Real-time Crowdsourcing
Prior work in real-time crowdsourcing has demonstrated the
feasibility of incorporating real-time, collaborative input into
the execution of control tasks. Most relevant to our work, real-
time crowdsourcing and various aggregation methods have
been successfully applied to remote-control driving tasks [15],
aerial navigation simulations [19], and collaborative interface
control [20, 22]. In general, these methods enable the crowd
to behave as a single, high-performing actor [5], in some cases
achieving on-demand, real-time responses in less than three
seconds [13].

Hybrid Intelligence Workflows
Active learning and human-in-the-loop machine learning meth-
ods are well-known forms of semi-supervised learning [24,
23, 7, 18]. Our approach is similar in that it integrates human
and machine intelligence, resorting to human computation
where automatic processes fall short, and vice versa [6, 8]. It
differs, however, in that it does not only use human input as a
superior groundtruth for subsequent model training [12, 11]
(although it permits this as well), but as JIT policy training,
where human input is collected, cached, and utilized by the
system to generate a policy on-the-fly.

LOOK-AHEAD APPROACH
We introduce the look-ahead approach to facilitate the creation
of Bolt, the first instantaneous crowdsourcing system. In this
section, we present a high-level view, which is later grounded
in an arcade-style game environment (Lightning Dodger) and
formalized as a Markov Decision Process (MDP), a popular
and broadly applicable formalism that is common to the AI
literature. The look-ahead approach works by “looking ahead”
to near-future states (e.g., by predicting what moves might
be made in the upcoming rounds of a game), and prefetching
crowd worker responses to these states. We call this the pre-
diction phase. During this phase, possible future states are



Figure 3. The Lightning Dodger game interface. During the prediction
phase, workers submit responses to as many possible future states as
they can and receive a reward for successfully dodging the lightning.

generated and sent to crowd workers who submit responses
that get cached by the system. Then, when the system actually
encounters one of these possible future states, it simply returns
the cached response. We call this the execution phase. In other
words, the look-ahead approach has crowd workers complete
a simulated task (the prediction phase) a few time steps ahead
of the actual task (the execution phase), allowing the system
to return responses to the actual task state as quickly as it can
retrieve the corresponding response from memory (Figure 2).

Additionally, responses from multiple workers can be aggre-
gated during the prediction phase in order to improve the
accuracy of the response returned during the execution phase.
In general, faster, more accurate workers will improve the
performance of any crowdsourcing system, but the look-ahead
approach is unique in that it can achieve performance gains
from slower workers as well. As each worker explores more
of the upcoming state space, the system can prioritize their
responses based on their real-time performance. For example,
in our experiments, we give priority to responses from slower
workers (who tend to give more accurate, careful responses).

In principle, the look-ahead approach will be applicable to
task environments that fit the MDP formalism. This is because
the approach requires that a set of possible future states can be
generated for any encountered state. In this paper, we apply
the approach to tasks where the state space, agent action set,
and transition function are all specified (i.e., available to the
system), but the reward function is left unspecified. Before we
formally define these terms, we first introduce an example of
one such task environment: the Lightning Dodger game.

LIGHTNING DODGER GAME
As a proof-of-concept testbed for just-in-time training via the
look-ahead approach, we developed a controlled task environ-
ment: a gridworld game called Lightning Dodger. Lightning
Dodger is flexible enough to test instantaneous crowd systems
on tasks of variable complexity. The goal of players in the
game is to avoid getting struck by lightning by dodging it once
it begins to strike (Figure 3)—a task that requires considerable
speed! In this section, we detail the mechanics of the game.

The Lightning Dodger gridworld is a N × M–cell rectangular
grid with a single-player agent (the dodger) and B adversary
players (lightning bolt locations). At each cell, the agent can
move up, down, left, right, or stay. The world “wraps-
around,” meaning that moving off one edge of the grid results
in the agent appearing on the opposite edge. The agent’s goal
is to avoid getting caught in the same cell as an adversary
(lightning bolt). Effectively dodging the lightning results in
a reward of r+ (+100 in our case), while failing to dodge (or
failing to input any action) results in a reward of r− (−100)
and the display of a large red “incorrect” indicator. Task
complexity is varied by adjusting input parameters, such as
grid dimension, round duration, the presence of obstacles, the
observability of the grid, and the number of adversaries and
their behavior.

TASK ENVIRONMENT SPECIFICATION
In the last section, we detailed the game mechanics of our
Lightning Dodger testbed. In this section, we model the game
as a Markov Decision Process (MDP), and make a few ad-
ditions to the canonical notation. The MDP formalism is
common to the reinforcement learning (RL) literature, which
has recently seen frequent use of arcade-style games as testbed
environments for state-of-the-art methods [2, 17]. Although
these games are far from real-world settings in terms of com-
plexity, they are used because they are non-trivial yet tractable
for current methods. Similarly, for the purpose of introducing
and validating our method, we demonstrate the look-ahead
approach on a tractable Lightning Dodger setup. In principle,
any game (or task environment) capable of being modeled
similarly will be amenable to our approach.

The MDP is a discrete-time, single-player game where the
agent takes an action at each time step. We borrow from the
canonical notation [21]:

S a set of states: s ∈ S
A a set of agent actions: a ∈ A
Pa(s, s′) the transition probability from s to s′ given a
Ra(s, s′) the reward on transition from s to s′ given a

At each time step t, the agent observes state st and takes ac-
tion at ∈ A(st) where A(st) is the set of actions possible in
state st. Supposing that the agent is in st = s, the action a
will lead to st+1 = s′ with probability Pa(s, s′), the value of
which will depend on whether the agent’s transition function
is deterministic or stochastic. In our experiments, we consider
the simplest Lightning Dodger setup: no gridworld obstacles,
a deterministic transition between states, and stochastic light-
ning bolt locations. In this setup, A(st) is the set containing
up, down, left, right, stay for all st (since each move is
available to the agent at each cell), and Pa(s, s′) = 1 (since
there is no indeterminacy about the resulting state given the
agent’s intended action). In a typical RL problem, the ac-
tion taken at each state is determined by a policy that tries
to maximize its reward from R and is learned over repeated
trials. However, our approach differs from typical RL in that it
“learns” (generates) a policy by having human crowds provide
responses to never-before-seen future states. This approach
doesn’t require that R be specified at all, so long as workers
implicitly understand the potential outcomes of their actions.



Figure 4. Left: Breaking path continuity did not result in any significant performance decline. Center: A heat map of agent movement across multiple
rounds for each path type on an 8 × 8 gridworld (n.b., the heat maps depict agent movement across multiple rounds, so the agent may end and start a
round in two adjacent cells). Right: Average response times for each path type (n.b., the look-ahead approach in the far right column).

Therefore, responses from crowd workers will be most bene-
ficial in cases where manually specifying a reward function
is difficult, as in many real-world tasks such as autonomous
vehicle navigation [1]. While the look-ahead approach does
not learn a policy in the traditional sense, prefetching worker
responses to possible future states can be seen as JIT policy
generation. We introduce the following notation:

F p a set of possible future states: f p ∈ F p

W a set of workers: w ∈ W

At each time step t, the set of possible future states will depend
on the actions possible in state st given the agent’s transition
function; formally, f p

t ∈ F
p(A(st)). The possible future states

are then distributed to workers depending on the number avail-
able (cardinality ofW) and a chosen priority metric (Figure 2).
In our setup, the simplest, optimal priority metric is a straight-
forward breadth-first search (BFS) of the state space centered
at the agent’s current position. Workers submit as many re-
sponses as they can during the prediction phase, making it
possible (with enough workers) to look ahead to more possible
future states. However, looking further into the future forgoes
an opportunity to increase robustness to individual worker
error by having the system prefetch and aggregate multiple
responses to each possible future state. In the next section, we
assess these trade-offs empirically by evaluating the relative
performance of various group sizes and aggregation methods.

EVALUATION
How should the look-ahead approach prioritize possible future
states for prefetching, and in what order should they be shown
to workers? Does this ordering affect worker performance? In
this section, we answer these questions by reporting on two
experiments conducted via Amazon Mechanical Turk (MTurk)
in which crowd workers played the Lightning Dodger game.
For each experiment, workers first completed a 3-round train-
ing phase (to familiarize themselves with the game controls)
before completing a 20-round testing phase. We compensated
workers 30-40 cents for a task taking approximately 100 sec-
onds resulting in an effective base rate of $10-14 per hour, with
100% bonusing for exceptional performance. We configured
our Lightning Dodger testbed as a 4× 4 grid with four random
adversary (lightning bolt) positions (Figure 3). As previously
noted, this task environment is scalable to more complex state

spaces by introducing various obstacles and behaviors. How-
ever, for these preliminary experiments, we chose to make the
adversary behavior stochastic, the agent’s transition function
deterministic, and the state space entirely observable with no
obstacles. In order to further reduce complexity and cost, we
used an agent state representation that included only those
grid cells relevant to the agent’s current position and action
set—specifically, the vicinity of five cells reachable from the
agent’s current location, and all possible combinations of four
lightning bolts within these cells (Figure 1). Given our Light-
ning Dodger setup, this agent state representation includes all
the information needed to successfully dodge lightning, and
would be applicable even to a grid-world of infinitely large
dimension. This setup gives us a sufficiently complex repre-
sentation of the problem at hand, but one that is also tractable
in terms of state space size.

Impact of Path Type on Worker Performance
We first evaluate crowd worker performance while varying
the order in which possible future states are shown to work-
ers. This is important because the system may need to show
workers a variety of future states that could have little or no
relation to one another. Understanding if this impacts worker
performance guides the design of our final approach.

We say that a state ordering maintains path continuity if the
next state shown to a worker is what the worker expects as the
outcome of their given input (i.e., if the agent follows the path
expected by the worker). In other words, if the worker inputs
left at time step t, does the agent (dodger) appear in the cell
to the left of its current position at time step t + 1? This may
not be the case if the agent has a stochastic transition function
(i.e., if in state s, the worker inputs action a and the agent takes
this action to reach s′ with some probability Pa(s, s′) < 1),
or if the look-ahead approach sends possible future states to
workers by doing a BFS traversal of the state space. A BFS
traversal would result in a path continuity break that may be
disorienting from the worker’s perspective (i.e., the agent may
appear to arbitrarily “teleport” to other parts of the grid). Such
a disconnect between the agent’s actual transition function
and the apparent transition function (observed by the worker
during gameplay) may negatively affect worker performance.



Figure 5. Left: Average accuracy by aggregation method. Right: Averagge accuracy by group size, for each aggregation method.

To test this hypothesis, we considered three path types (i.e.,
methods of distributing possible future states to workers) with
varying levels of path continuity:

Continuous Path : Maintains path continuity across both the
prediction phase and the execution phase. Workers observe
no path breaks between any state transitions.

Semi-Continuous Path : Maintains path continuity during
the prediction phase, but workers observe a path break when
the system returns a response during the execution phase.

Discontinuous Path : Does not maintain path continuity
during either phase. Workers observe path breaks between
every state transition.

We hypothesized that maintaining path continuity will benefit
performance because workers will spend less time situating
themselves on the grid than they would if the agent were to
appear at a different position at the start of each new round
(Figure 4-center). We tested each of the three path types
with ten unique crowd workers, across nine prediction phase
durations, for a total of 270 unique tasks.

Results
Unexpectedly, there was no statistically significant perfor-
mance difference between the three path types (p > 0.5) for
all comparisons between types (Figure 4, left). However sur-
prising, this result bodes well for the look-ahead approach.
Maintaining path continuity for each individual worker comes
at the expense of covering more of the highest-priority state
space since it requires allowing workers to follow their own
branch down the state space tree (when a straightforward BFS
traversal would be optimal in our case). Since there is no ob-
servable difference between path types, workers are directed
in a manner that allows the system to cover the entirety of
the state space more quickly than if the system attempted to
maintain path continuity for each worker.

As expected, there was a significant performance difference
between short and fast prediction phase durations (Figure 4,
left). Worker accuracy increased by 16.33% (p < 0.0001)
between a 500ms prediction phase with an average of 64.56%
(SD=3.77) and a 2000ms prediction phase with an average of
80.89% (SD=0.17). This confirms our intuition that workers
are more accurate when given more time to respond.

Live Evaluation of the Look-Ahead Approach
In addition to testing varying levels of path continuity, we eval-
uated the efficacy of the look-ahead approach by conducting
ten real-time experiments via MTurk, each with five worker
participants for a total of 50 unique participants. We recruited
workers to each game instance using the retainer model [3]
in LegionTools [14, 10], ensuring that worker participation
was synchronized for the duration of the task. Worker re-
sponses cached during the prediction phase were aggregated
using plurality vote in real time, and returned during the exe-
cution phase. We used the discontinuous path type, allowing
the system to do a straightforward BFS traversal of the state
space.

Results
There was no significant latency reduction between the three
path types (p > 0.1) for any comparison between types (Fig-
ure 4, right). However, the look-ahead approach outperforms
the fastest workers by approximately two orders of magnitude.
Discarding outliers that are more than two standard devia-
tions from the mean (two iterations), the look-ahead approach
achieves a median response time of 2ms, the time it takes for
the system to aggregate and return cached responses. Crowd
responses of anywhere near this speed (even on a small state
space) were not possible prior to this work.

Post-Hoc Aggregation
Having achieved a response time reduction that demonstrates
the efficacy of instantaneous crowdsourcing, we also explored
whether the look-ahead approach maintains levels of accuracy
comparable to individual workers. Using the data collected
during our real-time experiment, we tested the effects of vary-
ing crowd size (number of responses collected per state) and
aggregation method, over all possible adversary configura-
tions.

Slower responses are more accurate
For small task environments, the state space is quickly covered
making it possible to collect many worker responses to the
same possible future state. Aggregating these responses gives
the look-ahead approach robustness to individual worker error.
We assessed the performance of three aggregation methods:

Fastest 1 : the cached action with minimal response time
Slowest 1 : the cached action with maximal response time
Plurality : the most-frequently-occurring cached action



As a baseline, the unaggregated average accuracy was 75.23%
(SD=2.89). Slowest 1 resulted in an 6.0% increase over the
baseline (p < 0.0001) with an average accuracy of 81.23%
(SD=7.88), while Plurality resulted in an 5.86% increase over
the baseline (p < 0.01) with an average accuracy of 81.09%
(SD=8.2). Notably, Fastest 1 resulted in a significant decrease
in average accuracy of 13.8% in comparison with the baseline
(p < 0.0001), suggesting that workers submitting most quickly
may not be making careful judgments about the outcome of
their actions (Figure 5, left).

Larger groups are more accurate
In addition to varying aggregation methods, we also tested the
effects of varying group size. Average accuracy improved sig-
nificantly between a group of size five and a group of size one
under the Slowest 1 aggregation method (p < 0.01). Average
accuracy for Plurality and Slowest 1 consistently improved
with each additional worker (Figure 5, right). However, Fastest
1’s performance further decreased with each added worker,
suggesting that workers are more likely to be faster by way of
inaccuracy, rather than skill.

LIMITATIONS AND DISCUSSION
We have demonstrated that the Bolt system can deliver crowd
responses at machine-level speeds when the search space is
small enough to be explored exhaustively. In principle, our
reported performance (2ms response time; accuracy ∼ 80%)
will scale to larger state spaces so long as available resources
(i.e., budget and worker availability) are scaled proportion-
ately. However, this may not be feasible for “real-world” state
spaces. To what extent, then, can the system maintain instan-
taneous speeds and high accuracy for increasingly large and
realistic state spaces? Prior work has engaged up to 60-70
crowd workers simultaneously via a retainer [14], and in our
experiments, a single worker processes 1-2 states per second.
Additionally, processing a single state costs approximately
0.25-1 cents on average. These benchmarks suggest that the
Bolt system—as currently implemented—could process over
500 states in 4 seconds using 65 workers at cost of roughly $3.
Further performance gains may be achieved by using more so-
phisticated response aggregation methods and possible future
sampling techniques.

CONCLUSION AND FUTURE WORK
We have introduced the look-ahead approach to facilitate the
creation of Bolt, the first instantaneous crowdsourcing system.
These systems use real-time crowdsourcing in a hybrid intelli-
gence workflow to provide just-in-time training of automated
agents, achieving final response latencies on the order of mil-
liseconds (median of 2ms), instead of seconds, hours, or days.
Our experiments with crowd workers demonstrate that a two
order of magnitude speedup from the baseline response time
is possible via our approach, and accuracy improvements are
attainable via aggregation. While these results demonstrate
the promise of the look-ahead approach and open avenues
for instantaneous crowd-powered systems, scaling to larger
state spaces using probabilistic sampling and queuing tech-
niques remains an exciting and open problem for future work
to explore.
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