
Creating Interactive Behaviors in Early Sketch by
Recording and Remixing Crowd Demonstrations

Sang Won Lee1, Yiwei Yang1, Shiyan Yan2, Yujin Zhang1, Isabelle Wong1,
Zhengxi Tan1, Miles McGruder1, Christopher Homan3, Walter S. Lasecki1,2

Computer Science & Engineering1
University of Michigan, Ann Arbor
{snaglee,wlasecki}@umich.edu

School of Information2
University of Michigan, Ann Arbor

shiyansi@umich.edu

Department of Computer Science3
Rochester Institute of Technology

cmh@cs.rit.edu

In the early stages of designing graphical user inter-
faces (GUIs), the look (appearance) can be easily presented
by sketching, but the feel (interactive behaviors) cannot,
and often requires an accompanying description of how it
works (Myers et al. 2008). We propose to use crowdsourcing
to augment early sketches with interactive behaviors gener-
ated, used, and reused by collective “wizards-of-oz” as op-
posed to a single wizard as in prior work (Davis et al. 2007).
This demo presents an extension of Apparition (Lasecki et
al. 2015), a crowd-powered prototyping tool that allows end
users to create functional GUIs using speech and sketch.
In Apparition, crowd workers collaborate in real-time on
a shared canvas to refine the user-requested sketch interac-
tively, and with the assistance of the end users. Our demo ex-
tends this functionality to let crowd workers “demonstrate”
the canvas changes that are needed for a behavior and re-
fine their demonstrations to improve the fidelity of interac-
tive behaviors. The system then lets workers “remix” these
behaviors to make creating future behaviors more efficient.

Challenges and Contributions
Demonstrating interactive behaviors in early prototypes is
challenging for multiple reasons. Interactive behaviors in-
volve the dynamic transformation of multiple user interface
elements, meaning they cannot be easily described by one
static image. Furthermore, to accurately describe the behav-
iors often requires one to resort to abstract language: e.g.,
logic, states, and constraints. While there exist a number of
commercial products (e.g., Adobe FireWorks, Sketch, InVi-
sion) to create interactive mock-ups, using such tools during
the early iterations of a design project is time-consuming
compared to sketching on paper. Additionally, commercial
production often provides only a fixed set of behaviors that
are tuned to support specific types of interactions (e.g., web-
site wire-framing) and is often too limited for complex be-
haviors. For example, animating the behaviors of a game
character (e.g. Super Mario) or how the enemy characters
(e.g. turtles in Super Mario) respond to the other element’s
changes (e.g., Mario bouncing on them) cannot be done
easily with such products. A more traditional approach to
demonstrating such behaviors—one that is not as limited to
specific types of interactions—is to use paper cut-outs. But
this is limited by the effort needed to produce the cutouts.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Moreover, the resulting demonstrations of system behavior
cannot be as easily saved for future use.

In this work, we leverage crowd workers to demonstrate
the interactive behaviors in real time (tens of seconds), and
provide system support to document and retain the interac-
tive behaviors for further iterations, communication, and de-
velopment. We adopt record-and-replay features from exist-
ing tools for animations (Davis, Colwell, and Landay 2008),
interactive sketch (Obrenovic and Martens 2011) and inter-
active illustration composition (Kazi et al. 2014), but our
system eliminates the end users’ needs to learn new sketch-
ing software. Instead we let them create interactive sketches
by verbally describing what should happen and the context
of the system is focused on low-mid fidelity sketching tools
for the agile design process, rather than creating nice look-
ing interactive animations. Our approach is challenging due
to i) varying levels of crowd expertise on such tools; ii) the
temporary nature of crowd workers, who may freely come
and go throughout a session; and iii) the nature of real-
time groupware, which depends on coordination and aware-
ness (Gutwin and Greenberg 2002).
We showcase the following in this demonstration:
• The idea of “demonstrate-and-remix” in early-stage

sketch prototyping for creating interactive behaviors
• Methods for maintaining knowledge about behaviors
• Methods and tools for coordinating crowds in real-time

Design and Implementation
The complexity of interactive behaviors can vary highly:
from Super Mario bouncing on a Turtle to marking an item
as done in a “TODO” list. Typically, interactive behaviors
have three properties: P1: what triggers the interactive be-
havior, P2: the visual state changes made to the GUI by the
interactive behaviors, and P3: non-visible states and rela-
tionships that may affect current and future behaviors.

For instance, in a game setting when Super Mario bounces
on a turtle, the end-user’s verbal description could be:
“When Super Mario jumps and lands on top of an enemy
turtle [P1], the turtle should flip upside down, and hide its
head and legs in the shell [P2]; the shell can then be used
as a weapon once it lands on the ground [P3]”. The interac-
tive behavior here includes interaction (button press) state
recognition (triggering condition: Mario bouncing on the
turtle), animated behavior (turtle flipping and hiding), and



abstract relationships (gravity, behavior conditions). Varia-
tion makes automating and composing such interactive be-
haviors difficult without programming (where the time and
effort required is inappropriate for early prototyping). How-
ever, it is relatively easy for a crowd worker to understand
the triggering condition (P1), demonstrate what happens by
changing objects on canvas (P2) and the key abstract re-
lationships (P3). Existing approaches require text descrip-
tions to explain P1–P3, but complex or synchronous visual
changes (P2) are difficult to capture in linear text alone. We
use a “demonstrate-and-remix” approach for showing visual
changes (P2) and maintain a collective memory (P1, P3).

Demonstrate-and-Remix
Constructing visual state changes of interactive behaviors
in Apparition involves two (repeatable) phases: demonstrate
and remix. An interactive behavior can be demonstrated as a
series of element-wise transformations on the shared canvas.
To create an interactive behavior, a crowd worker demon-
strates (or performs) what is supposed to happen. In our
Mario-turtle example, a crowd worker can a) rotate the tur-
tle to make it upside down, b) make the turtle bounce as part
of a dying gesture by drag-and-drop, c) import a new image
of a turtle with its legs and head hidden, d) and delete the
original image of the turtle. While the crowd worker demon-
strates what needs to happen, Apparition records all interac-
tion the crowd workers perform on the canvas and organizes
them into sequences of “operations” on each element (here:
rotation, translation, creation and deletion, respectively).

In the “remix” phase, these demonstrations are available
for crowd workers to edit and create new interactive be-
haviors. This process is analogous to a DJ chopping, edit-
ing, processing and arranging audio samples to make music.
The idea of remix in real-time collaboration draws upon our
previous works in collaborative improvisation, where musi-
cians algorithmically remix short musical patterns (Lee et al.
2012) and musical notation (Lee and Freeman 2013), or pro-
grammers share a program state (Lee and Essl 2014). In our
system, each operation is available as a set of visual blocks
in a timeline editor. The length of each block represents the
time it takes to replay the recorded operation. The system
provides a set of remix functions for a crowd worker to edit.
For example, compress/stretch operation can change the du-
ration of an operation (or even make each operation instan-
taneous), trim/skip can cut some changes that are not desir-
able within an operation, normalize/smooth/ease-in-out can
refine the temporal execution of the demonstration, and re-
verse can create a backwards version of the demonstration.
The remix functions includes visually editing the trajectory
like resize,rotate and generative functions like clone, apply.

In the final step, the (remixed) operations can be placed in
the timeline so that a worker can temporally control execu-
tion time, intervals, overlaps and the order of operations, as
one behavior. In our Mario-turtle example, a crowd worker
can decide to make the operation (a), (c), (d) instant and
compress b) to happen in 1 sec and place the blocks in the
order: (a)-(b)-(d)-(c). Or if the worker wants to immediately
hide its legs and head, one can put (d) and (c) in front and
apply a) and b) to the imported image instead of the original
turtle image. This arrangement on the timeline editor con-
catenates the operations into one single behavior that can

be reproduced. The demonstrate-and-remix approach main-
tains a simple and easy process of composing an interactive
behavior so that crowd workers can quickly create complex
behaviors.

Retaining the Interactive Behaviors
Once the visual changes of one behavior have been repro-
duced, a crowd worker can observe the sketch and find the
trigger for the specified behaviors to make the sketch in-
teractive (e.g., observing when Super Mario makes contact
with a turtle). In this scenario, P1: (triggering conditions)
and P3: (abstract relationships) are left to crowd workers’
judgements, but the problem (P1,P3) is that this cannot be
easily automated, meaning the system cannot retain the be-
haviors unless the same crowd worker(s) are still constantly
later. In response to this challenge, crowd workers are in-
structed to document each behavior from the perspective of
triggering conditions (P1) and abstract relationships (P3).
The documentation of interactive behaviors is not only a
specification for end-users (or other designers and develop-
ers) to describe these behaviors as part of the sketch, but
also a tutorial for the crowd workers that later join the sketch
session and should understand/refine/demonstrate the inter-
active behaviors. The documented sketch supports collective
memory to help compensate for worker dynamicity in real-
time crowd systems (Lasecki et al. 2011; 2012).

Coordination
Lastly, composing interactive behaviors as a group poses
general challenges of real-time groupware, especially given
the tasks are open-ended. Having the crowd to work collabo-
ratively will have benefits not only in the time it takes to cre-
ate a interactive behavior as well as making the sketch inter-
active with multiple complex behaviors that can run concur-
rently. In our example, worker 1 can move the Super Mario
character, worker 2 can make Turtle move back and forth,
worker 3 observe if Super Mario steps on which turtle to
trigger the interactive behavior and so on. We notice a com-
parison between having limited tool sets and the ability to
lock the activity of demonstrating, remixing and document-
ing single behavior. This locking mechanism prevents con-
flicts and shares awareness among crowd workers. We skip
the detailed descriptions of each coordination tool here due
to space limitations.

Conclusion
Our demo showcases an extension to Apparition, a crowd-
powered prototyping tool for interactive systems. Apparition
enables an end user to verbally describe interactive behav-
iors while crowd workers demonstrate new behaviors—or
remix prior examples—to create them. The extension pro-
vides a set of methods and tools to retain the interactive be-
haviors for further communication and coordination among
crowd workers. Ongoing work aims to learn the structure
of interactive behaviors and analyze the crowd’s demonstra-
tions and corresponding textual documentation of these be-
haviors, which can be used to help automate the process.

References
Davis, R. C.; Saponas, T. S.; Shilman, M.; and Landay,
J. A. 2007. Sketchwizard: Wizard of oz prototyping of pen-



based user interfaces. In Proceedings of the 20th Annual
ACM Symposium on User Interface Software and Technol-
ogy, UIST ’07, 119–128. New York, NY, USA: ACM.
Davis, R. C.; Colwell, B.; and Landay, J. A. 2008. K-sketch:
a’kinetic’sketch pad for novice animators. In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems, 413–422. ACM.
Gutwin, C., and Greenberg, S. 2002. A descriptive
framework of workspace awareness for real-time group-
ware. Computer Supported Cooperative Work (CSCW)
11(3-4):411–446.
Kazi, R. H.; Chevalier, F.; Grossman, T.; and Fitzmaurice, G.
2014. Kitty: sketching dynamic and interactive illustrations.
In Proceedings of the 27th annual ACM symposium on User
interface software and technology, 395–405. ACM.
Lasecki, W. S.; Murray, K. I.; White, S.; Miller, R. C.; and
Bigham, J. P. 2011. Real-time crowd control of existing
interfaces. In Proceedings of the 24th Annual ACM Sympo-
sium on User Interface Software and Technology, UIST ’11,
23–32. New York, NY, USA: ACM.
Lasecki, W. S.; White, S. C.; Murray, K. I.; and Bigham, J. P.
2012. Crowd memory: Learning in the collective. Collective
Intelligence (CI 2012).
Lasecki, W. S.; Kim, J.; Rafter, N.; Sen, O.; Bigham, J. P.;

and Bernstein, M. S. 2015. Apparition: Crowdsourced user
interfaces that come to life as you sketch them. In Proceed-
ings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, CHI ’15, 1925–1934. New York, NY,
USA: ACM.
Lee, S. W., and Essl, G. 2014. Communication, control,
and state sharing in collaborative live coding. In Proceed-
ings of the International Conference on New Interfaces for
Musical Expression, 263–268. London, United Kingdom:
Goldsmiths, University of London.
Lee, S. W., and Freeman, J. 2013. Real-time music nota-
tion in mixed laptop–acoustic ensembles. Computer Music
Journal 37(4):24–36.
Lee, S. W.; Freeman, J.; Colella, A.; Yao, S.; and Van Troyer,
A. 2012. Evaluating collaborative laptop improvisation with
lolc. In Proceedings of the Symposium on Laptop Ensembles
and Orchestras, 55–62.
Myers, B.; Park, S. Y.; Nakano, Y.; Mueller, G.; and Ko,
A. 2008. How designers design and program interactive
behaviors. In 2008 IEEE Symposium on Visual Languages
and Human-Centric Computing, 177–184. IEEE.
Obrenovic, Ž., and Martens, J.-B. 2011. Sketching in-
teractive systems with sketchify. ACM Transactions on
Computer-Human Interaction (TOCHI) 18(1):4.


