
Codeon: On-Demand Software Development Assistance

Yan Chen1, Sang Won Lee2,Yin Xie1, YiWei Yang2, Walter S. Lasecki2,1, and Steve Oney1,2

School of Information1, Computer Science & Engineering2, University of Michigan, Ann Arbor
{yanchenm,snaglee,xieyin,yanyiwei,wlasecki,soney}@umich.edu

ABSTRACT
Software developers rely on support from a variety of
resources—including other developers—but the coordination
cost of finding another developer with relevant experience,
explaining the context of the problem, composing a specific
help request, and providing access to relevant code is pro-
hibitively high for all but the largest of tasks. Existing tech-
nologies for synchronous communication (e.g. voice chat)
have high scheduling costs, and asynchronous communica-
tion tools (e.g. forums) require developers to carefully de-
scribe their code context to yield useful responses. This paper
introduces Codeon, a system that enables more effective task
hand-off between end-user developers and remote helpers
by allowing asynchronous responses to on-demand requests.
With Codeon, developers can request help by speaking their
requests aloud within the context of their IDE. Codeon au-
tomatically captures the relevant code context and allows re-
mote helpers to respond with high-level descriptions, code
annotations, code snippets, and natural language explana-
tions. Developers can then immediately view and integrate
these responses into their code. In this paper, we describe
Codeon, the studies that guided its design, and our evalua-
tion that its effectiveness as a support tool. In our evaluation,
developers using Codeon completed nearly twice as many
tasks as those who used state-of-the-art synchronous video
and code sharing tools, by reducing the coordination costs of
seeking assistance from other developers.

Author Keywords
Development support; intelligent assistants; crowdsourcing

ACM Classification Keywords
H.5.m Information Interfaces and Presentation (e.g. HCI):
Miscellaneous; K.6.1 Management of Computing and Infor-
mation Systems: Software Development

INTRODUCTION
Software developers rely heavily on support from external re-
sources while programming. Although search engines and
Community Question-Answering (CQA) websites (such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI 2017, May 06-11, 2017, Denver, CO, USA.
Copyright c© 2017 ACM ISBN 978-1-4503-4655-9/17/05$15.00.
DOI:http://dx.doi.org/10.1145/3025453.3025972

StackOverflow [33]) are the most popular resources for de-
velopers, the best support is often provided by other develop-
ers [31, 20, 12]. Unlike web-based resources, expert devel-
opers can provide personalized help, high-level advice, and
project-specific code segments, and can often help identify
and overcome bugs that are difficult for a single developer to
find on their own [35]. However, it is often prohibitively dif-
ficult to find other developers willing to help, particularly for
developers working outside of a large organization.

Recently, a small set of paid services began connecting de-
velopers with remote expert developers [23, 21], who can
provide personalized feedback. These services use a syn-
chronous, one-on-one model of communication where devel-
opers connect to a remote expert, make a request, and com-
municate via video chat and a shared editor. However, there
are several drawbacks to this synchronous model [12]. There
is a coordination cost of finding an expert who is available
to help at the right time. If the first expert does not have
sufficient expertise (which they cannot know until after they
connect), there is a further cost—in both time and money—
to finding a new expert. One-on-one mentoring also requires
that the developer be attentive to the remote helper throughout
the session. Although this is suitable for teaching-oriented
requests where a back-and-forth conversation between devel-
opers and helpers is desirable, it is less helpful for tasks that
can be handed off entirely to the helper, such as requests for
short code snippets.

On-Demand Programming Assistance with Codeon
In this paper, we propose an asynchronous on-demand help
seeking model for programmers who need support that can
be more efficiently provided by remote expert developers than
existing methods. We implement and evaluate this model in
Codeon, a system that allows developers to request assistance
as easily as they can through in-person one-on-one commu-
nication, and tracks helpers’ responses, directly in the devel-
oper’s Integrated Development Environment (IDE). As we
will show, Codeon makes remote collaboration more practical
by reducing coordination costs while still enabling rich com-
munication between developers and helpers. Unlike previous
asynchronous collaboration solutions (such as code reposito-
ries), Codeon is request-oriented: it makes it easy for devel-
opers to make sufficiently detailed requests and send to other
developers, making the process quick and effective. Further,
Codeon’s asynchronous model is more scalable for multiple
helpers than synchronous support tools because it allows mul-
tiple helpers to work in parallel with the developer. As our
evaluation demonstrates, Codeon supports new forms of par-

1

Yiwei Yang

allel collaboration that make remote help-seeking more effec-
tive for developers. In this paper, we contribute the following:
• an effective approach for integrating external, paralleliz-

able expert assistance into a developer’s on-going process,
• tools and techniques that efficiently capture developers’ re-

quests’ contexts and mediate communication between end
users and remote developer helpers,
• evaluations of the trade-offs between speed and accuracy

for system components in different help seeking stages,
• a system (Codeon) that instantiates our approach to im-

prove development help-seeking tools, and
• evidence that Codeon helps developers solve more tasks in

a given time span than current approaches.

We begin this paper with a discussion of related work. We
then discuss how we designed and evaluated our system, fol-
lowed by limitations and future work.

RELATED WORK
Our work builds on previous research into pair programming,
developer help-seeking, distributed programming, and com-
munication support tools.

Help Seeking in Software Development
Community Question Answering
Many CQA websites, such as Stack Overflow [33], provide
online asynchronous support that allows software develop-
ers to post questions to a large community. These sites also
accumulated these questions and answers that they received
to form a large database of questions and answers for later
reference. Prior work [2, 3] studied building an “organi-
zational memory” through a growing database of questions
and answers. These CQA sites have a number of limitations
such as long waiting times to receive an answer after posting
the requests and the face that answers are not personalized.
In addition it takes significant time and effort to compose a
question with enough context and explanation for other pro-
grammers to be able to provide an answer [5]. Codeon en-
ables speech and content selecting modalities, and also pro-
vides on-demand expert support that allows developers to de-
scribe the requests as if the helpers were physically nearby.
They can select a code snippet, verbally ask “what does this
mean?”, hand off execution of planned coordination to the
system, and receive a meaningful response within minutes.

Commercial support platforms, such as Code Mentor [21]
and hack.hands() [23], provide more personalized help for
software developers. These sites allow developers to create
requests and connect them (or let them self-select) with ex-
perts, and provide a shared code editor and text/voice commu-
nication channel. These sites represent the state of the art for
seeking remote help from experts and use synchronous one-
on-one communication. In our system evaluation, we show
that on-demand support yields similar one-on-one support re-
sults while also having the benefit of being parallelizable.

Pair programming
Codeon is related to pair programming [14], a method that
allows developers to work together in real-time more effec-
tively. In particular, it is most related to distributed pair pro-
gramming, which is a derived version of pair programming,

allows remote participants to contribute to the same code-
base simultaneously [6, 38]. Although the distributed pair
programming approach removes many issues in real-time re-
mote collaboration [32], it can still be difficult to coordinate
and maintain context in distributed pairs. Our system instead
aims to automate coordination by temporarily incorporating
helpers into a task long enough for them to assist and then
move on.

Information Needs for Developers
Researchers have summarized the types of questions that de-
velopers ask in different contexts. Sillito et al. categorized 44
types of questions developers ask when evolving a large code
base [39]. Ko et al. explored six types of learning barriers
in programming systems for beginners and proposed possi-
ble solutions from programming system sides [26], and also
documented communication among co-located development
teams [25]. Guzzi et al. analyzed IDE support for collabora-
tion and evaluated an IDE extension to improve team commu-
nication [18].

Whereas these studies of information needs focused on ex-
isting team structures, our paper introduces a new path for
information seeking via on-demand expert support, and the
studies present qualitatively different data and implications.
Unlike existing team structures, our paper proposes a team
structure where a project stakeholder requests remote help
from experts who are not stakeholders. This difference has
significant implications for team trust, communication pref-
erences, and context sharing.

Collaborative Development
Systems like Codeopticon [16] and Codechella [17] provide
ways that helpers (i.e., tutors/peers) can efficiently monitor
the behavior of multiple learners and provide proactive on-
demand support. Version control systems such as git are often
used in programming collaboration because they help devel-
opers in distributed teams synchronize source code. However,
version control systems also require that developers manu-
ally push and pull changes and resolve merge conflicts. Col-
labode [15] introduced an algorithm that addressed the is-
sue of breaking the collaborative build without introducing
the latency and manual overhead of version control. Codeon
fetches developers’ latest code before helpers can send their
code responses to allow more experienced helpers to resolve
merge conflicts.

Communication tools like Slack or Skype make collaboration
more effective by supporting conversational interaction, but it
is often challenging to capture the code context within these
tools. Commercial IDE tools such as Koding [40], and Cloud9
[22] enable users to code collaboratively online in real-time.
Although these systems reduce many of the barriers devel-
opers face when working at a distance [32] and time spent
on environment configuration, they do not support the case
when developers are actively seeking help [41]. Codeon al-
lows developers to create requests at any time by speaking
their questions while the system automatically captures the
problem’s context.

2

IDE-Integrated Help Finding Tools
Codeon is a kind of Recommendation System in Software
Engineering (RSSE) [37], which, unlike most CQA websites,
often provides relevant information within an IDE. Prior work
on RSSEs has used knowledge of how developers seek infor-
mation to develop systems to provide semi-automated support
[10, 11]. Blueprint [9] allows developers to rapidly search
for a query in an embedded search engine in their local IDE.
Seahawk [34] heuristically filtered search results to automat-
ically increase the reliability of search results within an IDE.
Hartmann et al. [19] also explored ways to aid developers in
recovering from errors by collecting and mining examples of
code changes that fix errors. These in-IDE approaches allow
developers to save time by minimizing the change in task con-
text associated with requesting information. Recently, Chen
et al. [12] found that even with the state-of-the-art communi-
cation tools, such as Skype and JSBin, developers and helpers
still face communication challenges when it comes to inte-
grating answers into a codebase.

Tools that support developers using the crowd provide a way
to potentially receive more personalized feedback than au-
tomated systems can do. CrowdCode [30] allows develop-
ers to make requests to the crowd with self-written specifi-
cations of the desired function’s purpose and signature. But
this approach is limited in how much it can reduce develop-
ers’ time expenditure since making a request requires a de-
tailed problem specification. Real-time crowdsourcing tech-
niques have enabled on-demand interactive systems, which
have been shown to be able to improve the efficiency of ac-
complishing complex tasks [27, 28, 29].

Human Expert Computation
In this paper, we leverage crowdsourcing to make our system
available on demand and scalable. By using expert crowd
platforms like Upwork [1], which have thousands of develop-
ers with a wide range of language and framework expertise,
we can hire as many experts as needed to field a developer’s
set of requests. This allows Codeon to parallelize as much as
the end user developer may want to.

Prior work has explored how to use a priori tasking and guid-
ance to automate the coordination and task management pro-
cess. Foundry [36] provided an interface for composing ex-
pert workflows for large tasks. Foundry was used to cre-
ate Flash Teams—dynamic, expert crowd teams—to com-
plete tasks faster and more efficiently than self-organized, or
crowd-managed groups. In our work, we focus on similarly-
focused tasks with well-scoped hand-offs, but do not assume
that developers know the high-level composition of tasks in
advance, instead allowing developers to define tasks on-the-
fly as they discover and generate them.

CODEON
Codeon’s design is based on the feedback we collected over
the course of user studies of the three primary stages of help-
request interactions: Stage 1) making a request, Stage 2) writ-
ing a response, and Stage 3) integrating the response (Figure
1). The design goal per stage is as follows: (G1): to simu-
late the in-person communication in seeking for help, (G2):
to provide ways for a helper to associate responses with the

Figure 1: Asynchronous interactions between developers
and helpers can occur in three stages: making a request
(S1), writing a response (S2), and integrating the response
(S3). In Codeon, developers use an IDE plug-in to make
requests (S1) and integrate responses (S3), and helpers
use a web-based IDE to view content and generate re-
sponses (S2).

working code context, and (G3): to make the code integration
as effortless for developers as possible.

Separating the workflow into three stages enables better scal-
ability by allowing a question to be presented to multiple
workers and routed to a worker that has right expertise. These
three studies aimed to help us better understand the trade-offs
across different methods and features. To minimize the ef-
fects of varying prior expertise among participants, all pre-
liminary studies used a synthesized programming language.

Codeon’s developer interface is implemented as a plug-in
for Atom.io—a widely used code editor. It allows devel-
opers to make requests (S1) and visualize different formats
of responses and integrate responses (S3) within Atom. For
helpers, Codeon provides a web-based IDE that allows them
to see a list of developers’ requests and respond to them (S2).

Stage 1: Making a Request

User Study: Asking a Good Question
With the primary goal of improving developers’ productivity,
we designed this stage with two sub-goals in mind: 1) the
speed of request making needs to be fast, and 2) the request
needs to contain sufficient context to be understood. With
these goals, we compared three modalities for describing re-
quests: 1) speaking the request verbally (Voice), 2) typing the
request (Text), and 3) selecting a request from a computed set
of categories (Multiple Choice). We derived these categories
from common query types observed in a previous study [12].

Modality Voice Text Multiple Choice

Highlight 11.0 / 2.6 45.5 / 25.4 15.0 / 13.1
Click 14.0 / 3.7 37.5 / 23.1 27.8 / 18.0
None 21.5 / 8.4 33.9 / 17.4 25.1 / 9.5

Table 1: Time to make a request per condition (avg./s.d.).
We found that spoken requests (“Voice”) where develop-
ers highlighted the relevant context were the fastest for
developers to specify.

3

Figure 2: Codeon interface where the requests and responses are on the right panel(2). Developer’s code(1) and helper’s
code(3) are side by side for better comparison. Other responses includes explanation(4), annotation(5), and comments(6)

As prior work showed the importance of context in code re-
quest [12], we combined these modalities with three alterna-
tive methods for specifying the context of a given request:
1) selecting a region of content (Highlight), 2) pointing to
one location in the content (Click), and 3) a control condi-
tion (No selector). Combining these request modalities and
context selectors, we formed a 3×3 condition matrix for our
experiment. We recruited 30 workers from Upwork to test
the conditions and recorded the duration, content, and user
activities of each request.

After removing the unanswerable requests (e.g. those that did
not contain enough context), we found that, on average, voice
requests were the fastest method for specifying requests, and
text input was the slowest (Table 1). In the text condition, par-
ticipants spent more time carefully crafting requests, whereas
in the voice condition participants tended to speak more infor-
mally. The performance on the multiple choice option varied
based on participants’ familiarity with the options. However,
we found in a subsequent evaluation of the questions’ under-
standability that the multiple choice specifications were too
vague to be understandable by helpers.

Codeon Design: Voicing Requests
As a result of our preliminary studies, we chose to use the
speech modality for making requests. When developers make
a request, Codeon records their voice, synchronized with their
interactions with the editor (typing, highlighting, file switch-
ing, and scrolling), which serve as the content selectors. As a
request in voice is a dynamic signal, the content selector can
also be dynamic so that one request can have an animation of
not only the activity of content selection, but also some other
informative actions such as typing or viewport changes. This

way, a developer can speak and highlight code corresponding
to the request, which can be replayed in the helper’s interface.
This simulates a pair-programming condition where a devel-
oper is asking a question from the person who is co-located
by speaking and pointing to content on the screen. In addi-
tion, as a result of pilot studies with Codeon, we also added a
feature that allows developers to add an optional text title for
each request for later reference.

Stage 2: Writing a response

User Study: Response Modalities
In this stage, we want to design features that allow helpers
to provide different kinds of response format effectively and
efficiently. We conducted a user study with participants re-
sponding to a simulated request. One response can have mul-
tiple parts and can be written in three different forms: 1) to
select a segment of the code and to write an annotation that
is associated with the highlighted segment (Code Annotation)
2) to write an explanation in a text box outside of the editor
(Explanation), 3) to directly add and modify the code editor
(Code Inline), and 4) the combination of all three types (All).
We recruited 12 participants and recorded their performance
on this task. Based on the common requests that participants
had in Stage 1, we created three requests that each participant
responded to. We measured the frequency of each answer
type and conducted a post-study interview.

Our major high-level finding from this study is that partici-
pants’ choice of response type depends on the request type,
and each response type can support one or more types of re-
sponse formats. Overall, we concluded that these three dif-
ferent forms complement each other, and the usage frequency
of each type varied based on both the request type and the

4

Condition Advantages Disadvantages Design Takeaways

Code
Annotation

• Preserves original code
• Strong connection with the code

context

• If the number and the length of
annotations increase, they look
littered and occlude the main code
editor.

• Scalability needed while keeping
high visibility

Explanation
• Preserves original code
• Better suited for a long

conceptual answer

• No connection between code and
explanation

• Flexible and accessible

Code Inline • Quick integration • Possible merge conflicts
• Low visibility

• High visibility necessary

Table 2: Advantages, disadvantages, and design takeaways for three response formats from developers and helpers’
perspectives).

helper’s preference. Table 2 details the trade-offs we found
between different response formats in this study in terms ef-
fectiveness and efficiency.

Codeon Design - Response Generation
In order to allow helpers to easily view, understand, and re-
spond to each request, the helpers’ side of Codeon is built as
a web application where a helper can browse a list of devel-
opers’ requests. Figure 3 illustrates the helpers’ web inter-
face. Once specific request is selected, the web application
provides a programming environment that shows the files rel-
evant to that request (files that were open in the developer’s
editor at the time of request generation). As mentioned ear-
lier, a helper is able to not only play the audio that contains
the question, but also see the developer’s interactions with the
Atom editor (e.g., text selection, scrolling, and content edit-
ing). Although the request might be involved only part of
the original code base, all the scaffolding code are sent along
with the request which makes the code executable.

Note that Codeon does not support voice response because
we want the system to be scalable such that not only can one
worker supports multiple developers but also multiple work-
ers can work on one question. Multiple voice responses will
make the response review process time consuming which vi-
olates our efficiency design goal. In our study, helpers used
all three response types: code annotation, code inline, and
explanation. In Codeon, helpers can choose and/or combine
different types of answers based on their preference and the
question’s characteristics.

Stage 3: Integrating a response
User Study: Exploring Response Integration
The last step of the workflow is to review helpers’ responses
and make changes in the original code. For this step, we want
to make sure that the three answer forms (code annotation, ex-
planation, and code inline) can be integrated accurately and
quickly by developers. With these two sub-goals in mind,
we ran a user study of how developers integrate the same re-
sponses presented in different formats. The experiment was
composed of four conditions (one condition for each individ-
ual response form and one condition with all response forms)
with three tasks. We measured the time and accuracy of code
integration in each condition.

To make sure a response in different formats contains the
equivalent information, we converted an answer in one form
to another with specific rules. For example, when convert-
ing annotation and code inline to explanation, we specify line
numbers to associate the content with specific line numbers
of the code. We recruited eight participants with two for each
condition, and we recorded their screen during the study, and
conducted a post-task interview.

While we cannot generalize the findings due to the sparse
number of participants, we can find that explanation took
the longest for code integration and the code inline took the
shortest. Similar to the conclusion from the second study, the
post-interview indicated that there was no strong preference
for one of the three types. Rather, participants expressed the
trade-off between the types of answers and how each type of
answer can be desirable and not desirable in some ways. For
example, code annotation is desirable in a way that the textual
content can have strong connection with a certain part of the
code, complementing the explanation format (which makes it
difficult to map the content to the code snippets). Addition-
ally, participants preferred code annotation, as it preserves
the helper’s original code (and does not add new lines like
code inline would). However, it is often seen as being appro-
priate only for short answers since it is overlaid code editor,
meaning that it scales poorly as the number and/or length of
annotations increase.

Similarly, the explanation format was desirable because it
does not corrupt the original code, and it works well for both
long and short responses. Compared to annotation and ex-
planation, inline code allowed participants to finish the task
more quickly on average. While this is desirable to make the
integration process efficient, another challenge is that a par-
ticipant may miss the code inline added by a helper. This
naturally led us to design measures to keep track of a helper’s
code inline, similar to the Code Diff application which will
highlight the new code added. We summarized the advan-
tages and disadvantages for each response format and drew
design implications from the results that facilitate future sys-
tem development (Table 2).

Codeon Design: Response View & Integration
Codeon implements the response panel on the right side of the
Atom.io editor. As there can be multiple requests and multi-

5

Figure 3: The helper side of Codeon is an interactive web-
page that allows helpers to replay the request(0) and run
the code(4). Helpers can respond to it with explanation(1),
and inline code(2), and annotation(3).

ple formats per response, a scalable design is essential. The
view consists of two hierarchical levels: the requests view
and the response detail view (Fig. 2).

The request view has a list of requests where each menu
shows the brief summary of the request (title, associated file
name, audio replay button) so the developer can keep track of
multiple requests. Once a request is selected, the side panel
shows the full information of the request and the most re-
cently received response. In addition, if the response contains
annotation or inline code, Codeon will automatically split into
a two-editor view with the developer’s and the helper’s code
side by side. The region with annotation in the helper’s code
will be highlighted. When the ‘Code Diff’ button is clicked,
Codeon will display a color-coded difference between the de-
veloper’s and the helper’s code, similar to the ‘diff’ function-
ality in modern version control systems (e.g. Git).

Finally, one important goal of the response is to support ef-
ficient code integration. With the support of color-coded
diff, integration of new code submitted by a helper to the
original code can be done in one button click. In addition,
for the common issue of the merge conflict in collabora-
tive programming—when more than one person modifies the
same content — Codeon is designed to pull the most recent
code (if there is any difference) to helper’s side by default
before helpers sending the responses. This is to reduce the
workload of code merge for the developer. Lastly, to sup-
port conflict resolution and flexible integration, Codeon gen-
erates clear annotated conflict markers for developers, allow-
ing them to automatically merge the helper’s code or to re-
store the original copy.

Iterative Design of the End-To-End System
We iteratively designed the complete Codeon system based
on the feedback from 19 developers who used Codeon for a
series of small programming tasks. In the initial Codeon ver-
sion, we found that developers could not 1) efficiently iden-
tify the code that responses corresponded to, 2) understand
the differences between the original code and the helper’s ed-
its, and 3) merge results from helpers into a consistent and
functioning solution. The final version of Codeon allows de-
velopers to: 1) better connect the content and the request by
color mapping the line number and request panel, 2) better in-
tegrate helpers’ response by refining the code merge strategy,
and 3) more easily view and compare to helpers’ responses
with a side-by-side “Code Diff” tool.

EXPERIMENTAL SETUP
We conducted a laboratory study to better understand how
Codeon affects developers’ help-seeking behaviors.

Method
Codeon is built for any developers who seek programming
support from remote experts. We recruited 12 students from
authors’ university as developers with the requirement of
at least six months JavaScript experience. We also hired
three professional programmers as helpers from Upwork (up-
work.com), an online freelancer platform, who self-reported
multi-year JavaScript experience. The three helpers partici-
pated in multiple trials because we found little learning effect
in our pilot study and to ensure that the helpers we used met
our expertise criteria. We ran an hour and a half training ses-
sion with each helper to familiarize them with the system and
the study. We prepared two JavaScript task sets with each set
containing four programming problems. These problems are
independent on each other, and their answers cannot be easily
found online. To ensure the two sets of tasks were as equally
challenging as possible, yet conceptually different, we asked
two professional JavaScript developers to balance the tasks.
Every developer solved a series of JavaScript tasks in two
conditions: a “control” condition and a “Codeon” condition.

In the control condition, developers communicated with
helpers via Skype (for real-time synchronous voice communi-
cation) and Codepen.io (for real-time synchronous code shar-
ing). The control condition’s features are representative of
the communication mechanisms that code mentoring sites
use [21, 23]. In the Codeon condition, Skype and Code-
pen.io were disabled, and the developer was instructed to use
Codeon to make requests. Both conditions allowed develop-
ers to search for online materials. We collected audio and
screen recordings during the study to capture the behaviors
of the participants, and their responses to our follow-up ques-
tions. To minimize learning effects, we randomized the order
of conditions (Codeon, control) and the task sets (A, B).

We also instructed participants to finish the tasks as fast as
they could by using any resource they were given (online ma-
terials and a remote helper), but did not explicitly suggest any
strategies. Each study lasted one and a half hour, including
training for developers (15 min), the two conditions (30 min
per each), and the interview (15 min).

6

Figure 4: Overall result: The # of completed tasks is sig-
nificantly more in Codeon condition(avg./s.d.).

Hypotheses
We designed our study to evaluate four hypotheses:

HPerformance : Codeon can help developers to be more pro-
ductive in development tasks than the control system could.

HSystemTime : Time that developers spend with Codeon to ask
for and get help is less than that in the control system.

HInterruptions : Developers get interrupted less often in
Codeon than in the control system.

HParallelization : Developers can better parallelize their efforts
in Codeon than they can in the control system.

RESULTS

Overall Performance
The productivity of each condition was measured by counting
the number of completed tasks (out of four tasks per condi-
tion given 30 minutes cutoff time). Figure 4 shows that the
average number of completed tasks within the given time in
the Codeon condition is significantly more than it is in the
control condition (two-tailed paired-samples Students T-Test,
p = 0.03), which supports our hypothesis HPerformance. To un-
derstand why developers were more effective with Codeon,
we further analyzed our user data, as we will describe in the
following sections.

Individual Task Performance
To understand the advantages of Codeon, we unpacked our
data to investigate participants’ performance on each task.
As Table 3 shows, participants spent less time in complet-
ing tasks on average when using Codeon condition, although

Codeon Control Time Increase(%)

Time spent per completed task 10.57 11.32 7.1%

Time spent per incomplete task 8.49 9.15 7.8%

Time spent per incomplete task
in non-tail condition 6.84 8.47 23.7%

Table 3: The average time (in minutes) spent per task.
Participants spent longer in the control condition, on both
completed and incomplete tasks. Tasks in tail condition is
the task that are stopped by the researchers by the time
constraints (30 min). Note that, by definition, there cannot
be complete task in the tail condition.

name Codeon Control p-value

Avg. # of requests per
completed task 1.71(1.41) 2.18(1.54) 0.45

system active time(sec) per
completed task 165.8(106.3) 344.4(249.5) 0.05

Table 4: The # of requests made per completed task is
not significantly different. The average system active time
per completed task in Codeon is longer than in the control
condition (avg./s.d.).

the difference is not significant. While Codeon may help de-
velopers to complete tasks quicker than the control model,
the difference is not significant enough to be the sole factor
in Codeon’s result. Meanwhile developers may waste more
time on a task when they get stuck with it in the control con-
dition. The time spent per incomplete task also support this
conjecture. Especially if we exclude the incomplete tasks that
were stopped by the researchers for 30 minutes (“tail condi-
tion”), we can observe a 23% time increase in the control
group. As the time spent on the incomplete tasks were deter-
mined by an external factor (the time constraint), not by the
developer’s intention, we believe this measure better reflects
the time spent on incomplete tasks for the comparison pur-
pose. While we cannot calculate the statistical significance
for these three measures as samples in each condition are
part of the entire data set (e.g. complete tasks in Codeon
are different from the complete tasks in the control condi-
tion), the results indicate that the improvement in overall pro-
ductivity potentially comes from wasting less time when the
developer cannot solve the problem in Codeon. We hypoth-
esize (HParallelization) that the asynchronous nature of Codeon
workflow encourages developers to hand off their work to a
helper and to move on to the next task, whereas, in the pair-
programming session, two developers typically work on the
same task at a time. In the next section, we evaluate if devel-
opers parallelize work efforts during the experiments.

As we do not find strong evidence of developers completing
tasks faster in Codeon, we further analyze how actively de-
velopers utilize the assistance system when they were able
to complete tasks so as to give an account of the increase in
overall performance. The average number of requests and
system active time per complete task is reported in Table 4.
System active time is the time that a developer spent on the
assistance system (Codeon or the control system) to make re-
quests to a helper and to receive assistance from the helper.
System active time thus includes any time that would not
have been needed if there was no helper, for example, watch-
ing the helper programming (in CodePen), creating a request,
reviewing responses from the helper, or interacting with the
helper (via Skype, CodePen or Codeon). The result shows we
cannot see a significant difference in the number of requests
made per complete task (p = 0.45). The system active time
per completed task in Codeon, on the other hand, is less than
the one in the control condition (p = 0.05), which shows a
tendency to significance for our hypothesis HSystemTime. Based
on our self-assessment from the video annotation process,
we notice that the cost of extra time in the control condition
may come from the nature of synchronous communication

7

name Codeon Control

Avg. # of alerts 6.1(3.0) 1.9(2.2)
Avg. # of interruptions 2.5(1.6) 1.9(2.2)
Ave. of interruption/alert 0.48(0.3) 1.0(0)

Table 5: # of interruptions, alerts, and average of individ-
ual ratio of interruption/alert(Avg. / S.D.).

between two ends. For example, a remote pair-programming
session may cost additional time coming from social norms,
real-time typing process, additional out-of-context questions
(or feedback) [13] that may not contribute to the overall per-
formance and does not exist in the Codeon model. This aligns
with our belief that Codeon is more efficient in seeking for
and receiving help from a remote assistant. The efficiency in
Codeon can potentially cause an overall increase in the per-
formance by expediting completion time or giving the devel-
opers more time to complete.

Interruptions and Parallelization
Studies have shown that interruptions can be costly to pro-
grammers [24]. As Codeon follows the asynchronous collab-
oration model, we analyze the occurrences of a helper inter-
rupting a developer and evaluate if it has any advantage of
being less disruptive to the developers. Annotating the screen
recordings of each experiment, we count the number of alerts
and interruptions. An alert is a message from a helper that
initiates a conversation, which gets an attention from the de-
veloper or notifies the developer that a response/comment is
received. Receiving an alert does not necessarily mean that
the developer needs to take action immediately or is inter-
rupted. For example, in Codeon, a developer can see the no-
tification of a helper’s response and review the response later,
once the work being carried out is done, or, in the control con-
dition, the developer can ask the helper to wait a little while.
In addition, the task that the developer was currently working
on may be directly relevant to what the helper responded so
that the interrupted task not needed to be resumed. We say an
alert causes an interruption if the two following conditions
are satisfied: i) the alert makes the developer immediately
stop what they are working on in order to review or respond
to the helper’s message, and ii) the stopped task needed to be
resumed later. Table 5 shows the absolute numbers of both
alerts and interruptions are greater in the Codeon condition.
This is because in Codeon, one comment is counted as an
alert, whereas in the control condition, the developer and the
helper constantly communicate so that they have a smaller
chance to be interrupted as they are working together. How-
ever, when a helper alerts a developer in the conference call,
the developer has to stop the current task 100% of the time. In
the meantime, in Codeon, they were interrupted (immediately
respond to the helper and later resumed the task) only half of
the time (48%), and otherwise they could keep working on
their task until the point that they finish the current activity
(e.g. finishing the line that was being written, finishing read-
ing online materials that were being read). Even when devel-
opers were interrupted in Codeon, we observed that most of
the interruptions did not require a significant context switch
in the developer’s mental model as the interrupted task was

name Codeon Control

Avg. # of parallelization per developer 2.1(1.2) 0.3(0.6)
Total time(s) of parallelization 281.9(243.5) 2.4(5.7)
Avg. time(s) of parallelization per occurrence 114.2(80.5) 1.9(4.8)

Table 6: Time spent and the number of parallelization
behavior in two conditions (Avg. / S.D.).

relevant to the response from the helper. We did not choose
to evaluate this as it can be subjective. If we look further
detail for individual, 5 out of 12 developers chose to wait to
review responses and, on average, they spent 18.1 seconds
to finish the ongoing activity. Potentially, this tendency can
scale once the system is deployed and is constantly used by
developers. Indeed, using Codeon, developers can have bet-
ter control over their workflow by having a smaller number of
interruptions (HInterruptions) whereas, in synchronous collabo-
ration, the workflow will be determined by the pair otherwise
the developer will be interrupted.

As briefly mentioned, another benefit of asynchronous col-
laboration can come from a developer parallelizing the task
by handing off subtasks to helpers. To confirm the possi-
ble benefit in Codeon, we annotated the video to see if de-
velopers parallelize their work while waiting for responses
from helpers. We present the number of parallelization and
the time that the developers parallelize their tasks in Table 6.
Table 6 presents that developers parallelized their work 2.1
times on average when they hand off their work to the helper
(mean = 2.1) in Codeon condition, whereas in the control
condition this behavior occurred close to zero (mean = 0.3).
In addition, their time spent on parallelization is much longer
in the Codeon condition. Furthermore, the two developers
with parallelization behavior in control condition were in-
stantly interrupted (mean = 1.9s) by helpers when they at-
tempted to work on different tasks. We found that 11 out
of 12 developers parallelized their work when using Codeon,
but only two when using the control system. Thus we can
assume the parallelization is natural in the setting of Codeon.
The result supports our hypothesis HParallelization that Codeon
supports the distributed workflow. This potentially account
for the improvement performance.The evidence and analysis
above provide us with insights on the overall performance
of two systems. Next, we review developers’ feedback and
screen recording to facilitate the qualitative analysis.

Post Interview and Developer Feedback
Parallelization
Nearly every developer (11/12) parallelized their efforts. We
discovered two patterns of parallelization behavior from both
post-interviews as well as our observations. After sending a
request or comment, developers would either 1) review a dif-
ferent task, or 2) work on another part of the same task. The
first pattern is more common, and some developers used it di-
rectly after they read the problem. The second pattern often
happened in those tasks with multiple requirements. Devel-
opers would divide the task into a few subtasks and distribute
some to helpers. For example, one task asks to remove the du-
plicates of an array and then sort it. One developer (P4) asked

8

his helper to write a function to remove the duplicates. While
waiting for a response, he started to code the sort method. An-
other developer (P9) moved on to a search task after making
requests about writing a method and code debugging.

“I was able to kinda break down the tasks into subtasks, and
kind of, things I can ask him to help with, and things I can
work myself. (P9)”

In general, we observed that developers consistently showed a
tendency to parallelize their work, regardless of the condition.
However, we found that Codeon allows them to accomplish
the distributed workflow.

Interruption
The post-interview also supports our hypothesis HInterruptions
by having five participants directly mention the interruption
issues in the control system (none in Codeon). There are two
types of interruptions we noticed. One is direct interruption
which we defined in the previous section, and the other is
more subtle distraction coming from the conference call it-
self. For example,

“When using Skype, he kept asking me about clarifying things
that I asked him, I couldn’t do anything at the same time, like
I had to pay my attention to what he’s asking and make sure
that whatever I’m asking him, he understood properly. (P9)”

Three developers in the control condition, although work-
ing on other tasks while waiting for helpers, were interrupted
by their helpers (e.g. asking for confirmation, requesting to
check for answers). The helper regularly asked for confir-
mation such as “you see this?”, which force the developer to
switch applications back and forth to interact with the helper
until they eventually decided to solve this problem together.

CODEON FOR NON-PARALLELIZABLE TASKS
Our results demonstrate that Codeon can help developers
complete more tasks when there is the possibility of paral-
lelizing tasks. However, there may remain a subtle but im-
portant trade-off: if the success of Codeon is contingent on
the amount of parallelism possible for a given problem, then
there may be a “minimum” amount of task parallelism be-
low which the baseline condition outperforms Codeon. Intu-
itively, predicting how parallelizable a future request will be
in order to select the most effective system is highly imprac-
tical for developers. Fortunately, we found no evidence that
this is ever necessary with Codeon.

To test if there exist any such cases where the baseline outper-
forms Codeon, we ran a study with 14 pairs of programmers
(separate from those used in our primary study). We chose
the hardest possible case for Codeon: program with an unfa-
miliar language with no potential parallelism between tasks.
To make parallel tasks infeasible, developers were required
to have no experience with the language used in the task (An-
gularJS). Because of unfamiliarity and all the tasks required
some levels of understanding to finish, real time communica-
tion would provide stronger support.

Even comparing to an earlier version of Codeon, we found
no evidence that the control condition outperformed Codeon
(p > 0.50), even in this most challenging scenario. While

we cannot conclusively prove these two cases are not differ-
ent (i.e., disprove the null hypothesis), the lack of evidence
of a difference in this study, and our anecdotal experience ob-
serving participants suggests no reason to expect a trade-off
between the two systems to exist. Therefore, our data shows
that Codeon can perform at least as well as the control system.

Additionally, we observed that 74.17% of the time a devel-
oper was engaged with the helper on average, versus 44%
with Codeon (mean=0.44, s.d.=0.158, p < 0.0005). This fur-
ther affirms the efficiency observations in our results.

DISCUSSION

Codeon User Interface
Almost all the developers (11/12) in the experiment gave pos-
itive feedback on Codeon’s user interface, that supports our
design decisions retrieved from the series of user studies.

For example, participants mentioned that making requests by
using multimodal interaction (voice + code context) allows
them to “give context easier” (P4). Furthermore, participants
were generally in favor of the way in which Codeon integrates
code-based responses. For example, the pop-up notification
and the alert sound coming with the new message helped de-
velopers to be notified more quickly.

“..the notifications that it gave me are very good... comparing
to only have text, add sound can help me to... when i look at
the left i can still know what happens on the right.(P5)”

Codeon also prevents developers from “missing something
that a helper wrote”, and helps them better understand the
code by allowing them to “compare two code files simultane-
ously” (P7). Two developers mentioned that they could not
follow where the helper was typing in the control condition
because, unlike Codeon, the interactions cannot be replayed
nor easily recorded.

“In Codepen, the helper is changing in another window
(other than Atom) that I have no idea what he did. In Skype,
if I have a question I just say it but there is no history. (P3) ”

Effects of Social Norms
Previous research shows that lower social burden on asyn-
chronous communication activity than synchronous [4]. We
also found that developers in the control condition expressed
the challenge in real-time communication: phrasing the re-
quests, or explaining the code. With the study setup of having
a remote helper available in real-time via a conference call,
four developers addressed that they were less comfortable and
felt more pressure because they felt they “have to ask some-
thing” (P11), and less comfortable when having someone just
“sitting there” (P11, P4). The rest of them felt little pressure
and relied on helpers more to solve the problem. On the other
hand, no one expressed similar concerns for Codeon. Codeon
offers a more independent environment with little social pres-
sure and the full control over code and the assistance pipeline.

“In Skype, but I also felt like, not that he’s interrupting me,
but like I can just hear him in the background, its kind of, not
intimidating, but like, make me feel like I had to ask questions,
even though I wanted to do stuff on my own. (P11)”

9

Potential of Codeon
One of the limitations of our study is that there are only four
tasks, which limits Codeon’s potential to support paralleliza-
tion better and may lead to a larger difference in productivity.
For example, there is one developer finished all four tasks in
the Codeon condition within 30 minutes. Also, we found that
the developers, who only have one task left before the session
ended, cannot parallelize their effort(as they could before) be-
cause there are no other tasks left. Instead, after making a re-
quest for one task, they would continue working on that same
task which creates redundancy.

In contrast, many developers expressed concerns on the con-
trol system for the synchronous nature of the collaboration.
For example, as two developers are sharing an editor, the edi-
tor can be a limited resource that blocks a developer’s interac-
tion. Participants expressed that they felt limited for various
reasons: being “stuck watching” (P12) the helper’s typing,
being distracted with the other “hear him in the background”
(P11), or “delete my code and directly add his code” (P7).
Especially given the social barrier in which a developer is put
to work with a remote stranger, the pair programming model
revealed some challenges for developers in engaging with the
helpers in a short time.

Generalizing Codeon’s Approach
Our target audiences are programmers who need support that
can be more efficiently provided by remote expert developers
than existing methods. This remote assistance model can be
useful in many contexts including education and distributed
teams. We focus on developers’ communication, which is
important in all of these use cases, regardless of team size
or incentive. The three stages of Codeon system we have
discussed before fit into a more general model that Codeon
advances. Specifically, tools for generating sub-tasks in the
current context of work (S1), making it easy for helpers to ‘re-
hydrate’ that context (S2), and providing tools for quickly and
effectively integrating contributions (S3), can be used across
various domains, for example, using software made for pro-
fessionals (e.g. Photoshop or Final Cut Pro) Exploring how
to effectively recreate this approach in other settings is future
work beyond the scope of this paper.

LIMITATIONS AND FUTURE WORK
Codeon is an early step towards always-available, crowd-
powered developer assistance. As such, there are several lim-
itations to the current system, but also many exciting direc-
tions of future work that we hope to bring light to in the HCI,
software engineering, and crowdsourcing communities.

Input Modalities
Based on observations and feedback, we found that more than
half of participants prefer to have some of their requests made
only in text. This is either because they are “used to typing
questions” (P6), or they feel it is “hard to speak their ques-
tions clearly with one recording”, or it is just because “typing
is more convenient”(P6) for some cases. Indeed, three devel-
opers phrased their requests in the request title and did not
record any audio. This suggests that we could enable both
text and voice request modalities in future systems.

New Hiring Models for Expert Crowds
On-demand hiring models in prior work have mostly focused
on non-expert workers (e.g. [8, 7]). These models assume a
workflow that does not validate specific expertise, and usually
involve a posted request that includes instructions in details.
Future work will explore methods for ad hoc team forma-
tion and new expert-sensitive recruiting strategies, and will
be able to leverage Codeon as a platform for testing these
methods in the wild.

Team-Based Support of Requests
Not only may we be able to recruit individual expert helpers
to field requests in parallel, but also we can begin exploring
how teams can be formed around these tasks. This line of
work shares many of the motivations of the prior work on
Flash Teams [36]—quick assembly of efficient, scalable ex-
pert teams—but also aims to accomplish this without a priori
knowledge of task structure. In place of a priori knowledge,
we may be able to leverage what the system can understand
about the structure and interplay of the user’s existing code-
base to find subtasks and even critical skill sets that may be
hard to find individual expert helpers to completely address.
We believe that Codeon provides an ideal platform for re-
search such as this.

Longitudinal Deployment Studies
Using new tools in the software development process (or any
expert workflow) requires time to acclimate to observe the
true final effect. People become more comfortable with the
tool, more knowledgeable in how to best use it in their work,
and begin to plan out their tasks in the context of having the
tool at their disposal. While our initial results in this paper
show tremendous promise for Codeon, future work will study
how developers’ processes (both individual and collaborative)
change with long-term use of the tool in team and for-hire
settings. We are already starting to partner with development
organizations, but conducting such a long-term evaluation is
beyond the scope of this paper.

CONCLUSION
In this paper, we introduced Codeon, an in-IDE tool that al-
lows software developers to get asynchronous on-demand as-
sistance from remote programmers with minimal effort. Our
results showed that developers using Codeon are able to com-
plete nearly twice as many tasks as they could using state-of-
the-art synchronous video and code sharing tools, by reducing
the coordination costs of seeking assistance from other devel-
opers. We have already begun using Codeon in our research
group to get external help, as well as efficiently collaborate
within our own teams. In the future, in-IDE assistance can
be used to further improve productivity, reduce interruptions,
and even leverage a combination of human and machine in-
telligence to aid developers.

ACKNOWLEDGEMENTS
Thanks to Aaron Tatum, Zelin Pu, Gabriel Matute, and Jaylin
Herskovitz for their feedback on the system design and data.
This work was supported by the University of Michigan.

10

REFERENCES
1. Upwork inc. (formerly odesk),

https://www.upwork.com, 2015. Accessed: April, 2016.

2. Ackerman, M. S. Augmenting organizational memory: a
field study of answer garden. ACM Transactions on
Information Systems (TOIS) 16, 3 (1998), 203–224.

3. Ackerman, M. S., and McDonald, D. W. Answer garden
2: merging organizational memory with collaborative
help. In Proceedings of the 1996 ACM conference on
Computer supported cooperative work, ACM (1996),
97–105.

4. Almaatouq, A., Alhasoun, F., Campari, R., and Alfaris,
A. The influence of social norms on synchronous versus
asynchronous communication technologies. In
Proceedings of the 1st ACM international workshop on
Personal data meets distributed multimedia, ACM
(2013), 39–42.

5. Asaduzzaman, M., Mashiyat, A. S., Roy, C. K., and
Schneider, K. A. Answering questions about
unanswered questions of stack overflow. In Proceedings
of the 10th Working Conference on Mining Software
Repositories, IEEE Press (2013), 97–100.

6. Baheti, P., Gehringer, E., and Stotts, D. Exploring the
efficacy of distributed pair programming. In Extreme
Programming and Agile MethodsXP/Agile Universe
2002. Springer, 2002, 208–220.

7. Bernstein, M. S., Brandt, J., Miller, R. C., and Karger,
D. R. Crowds in two seconds: Enabling realtime
crowd-powered interfaces. In Proceedings of the 24th
annual ACM symposium on User interface software and
technology, ACM (2011), 33–42.

8. Bigham, J. P., Jayant, C., Ji, H., Little, G., Miller, A.,
Miller, R. C., Miller, R., Tatarowicz, A., White, B.,
White, S., et al. Vizwiz: nearly real-time answers to
visual questions. In Proceedings of the 23nd annual
ACM symposium on User interface software and
technology, ACM (2010), 333–342.

9. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer,
S. R. Example-centric programming: integrating web
search into the development environment. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2010), 513–522.

10. Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., and
Klemmer, S. R. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM (2009),
1589–1598.

11. Brandt, J., Guo, P. J., Lewenstein, J., Klemmer, S. R.,
and Dontcheva, M. Writing code to prototype, ideate,
and discover. Software, IEEE 26, 5 (2009), 18–24.

12. Chen, Y., Oney, S., and Lasecki, W. Towards providing
on-demand expert support for software developers. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2016).

13. Chong, J., and Hurlbutt, T. The social dynamics of pair
programming. In 29th International Conference on
Software Engineering (ICSE’07), IEEE (2007),
354–363.

14. Cockburn, A., and Williams, L. The costs and benefits of
pair programming. Extreme programming examined
(2000), 223–247.

15. Goldman, M., Little, G., and Miller, R. C. Real-time
collaborative coding in a web ide. In Proceedings of the
24th annual ACM symposium on User interface software
and technology, ACM (2011), 155–164.

16. Guo, P. J. Codeopticon: Real-time, one-to-many human
tutoring for computer programming. In Proceedings of
the 28th annual ACM symposium on User interface
software and technology, ACM (2015).

17. Guo, P. J., White, J., and Zanelatto, R. Codechella:
Multi-user program visualizations for real-time tutoring
and collaborative learning. In Visual Languages and
Human-Centric Computing (VL/HCC), 2015 IEEE
Symposium on, IEEE (2015).

18. Guzzi, A., Bacchelli, A., Riche, Y., and van Deursen, A.
Supporting developers’ coordination in the ide. In
Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing,
ACM (2015), 518–532.

19. Hartmann, B., MacDougall, D., Brandt, J., and
Klemmer, S. R. What would other programmers do:
suggesting solutions to error messages. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, ACM (2010), 1019–1028.

20. Herbsleb, J. D., Klein, H., Olson, G. M., Brunner, H.,
Olson, J. S., and Harding, J. Object-oriented analysis
and design in software project teams. Human–Computer
Interaction 10, 2-3 (1995), 249–292.

21. Inc., C. Code mentor, https://codementor.io/, 2014.
Accessed: April, 2016.

22. Inc., C. I. Cloud9 ide, https://c9.io, 2010. Accessed:
April, 2016.

23. Inc, H. Hack.hands(), https://hackhands.com/, 2015.
Accessed: April, 2016.

24. Iqbal, S. T., and Horvitz, E. Disruption and recovery of
computing tasks: field study, analysis, and directions. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, ACM (2007), 677–686.

25. Ko, A. J., DeLine, R., and Venolia, G. Information needs
in collocated software development teams. In
Proceedings of the 29th international conference on
Software Engineering, IEEE Computer Society (2007),
344–353.

26. Ko, A. J., Myers, B., Aung, H. H., et al. Six learning
barriers in end-user programming systems. In Visual
Languages and Human Centric Computing, 2004 IEEE
Symposium on, IEEE (2004), 199–206.

11

27. Lasecki, W., Miller, C., Sadilek, A., Abumoussa, A.,
Borrello, D., Kushalnagar, R., and Bigham, J. Real-time
captioning by groups of non-experts. In Proceedings of
the 25th annual ACM symposium on User interface
software and technology, ACM (2012), 23–34.

28. Lasecki, W. S., Kim, J., Rafter, N., Sen, O., Bigham,
J. P., and Bernstein, M. S. Apparition: Crowdsourced
user interfaces that come to life as you sketch them. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, ACM (2015),
1925–1934.

29. Lasecki, W. S., Wesley, R., Nichols, J., Kulkarni, A.,
Allen, J. F., and Bigham, J. P. Chorus: a crowd-powered
conversational assistant. In Proceedings of the 26th
annual ACM symposium on User interface software and
technology, ACM (2013), 151–162.

30. LaToza, T. D., Towne, W. B., Adriano, C. M., and
van der Hoek, A. Microtask programming: Building
software with a crowd. In Proceedings of the 27th
annual ACM symposium on User interface software and
technology, ACM (2014), 43–54.

31. LaToza, T. D., Venolia, G., and DeLine, R. Maintaining
mental models: a study of developer work habits. In
Proceedings of the 28th international conference on
Software engineering, ACM (2006), 492–501.

32. Olson, G. M., and Olson, J. S. Distance matters.
Human-computer interaction 15, 2 (2000), 139–178.

33. Overflow, S. Stack overflow, https://stackoverflow.com/,
2015. Accessed: April, 2016.

34. Ponzanelli, L., Bacchelli, A., and Lanza, M. Seahawk:
Stack overflow in the ide. In Proceedings of the 2013
International Conference on Software Engineering,
IEEE Press (2013), 1295–1298.

35. Raymond, E. S. The Cathedral and the Bazaar, 1st ed.
O’Reilly & Associates, Inc., Sebastopol, CA, USA,
1999.

36. Retelny, D., Robaszkiewicz, S., To, A., Lasecki, W. S.,
Patel, J., Rahmati, N., Doshi, T., Valentine, M., and
Bernstein, M. S. Expert crowdsourcing with flash teams.
In Proceedings of the 27th annual ACM symposium on
User interface software and technology, ACM (2014),
75–85.

37. Robillard, M. P., Walker, R. J., and Zimmermann, T.
Recommendation systems for software engineering.
Software, IEEE 27, 4 (2010), 80–86.

38. Schenk, J., Prechelt, L., and Salinger, S. Distributed-pair
programming can work well and is not just distributed
pair-programming. In Companion Proceedings of the
36th International Conference on Software Engineering,
ACM (2014), 74–83.

39. Sillito, J., Murphy, G. C., and De Volder, K. Asking and
answering questions during a programming change task.
Software Engineering, IEEE Transactions on 34, 4
(2008), 434–451.

40. Sinan Yasar, D. Y. Koding, 2012. Accessed: April, 2016.

41. Steinmacher, I., Silva, M. A. G., and Gerosa, M. A.
Barriers faced by newcomers to open source projects: a
systematic review. In Open Source Software: Mobile
Open Source Technologies. Springer, 2014, 153–163.

12

	Introduction
	On-Demand Programming Assistance with Codeon

	Related Work
	Help Seeking in Software Development
	Community Question Answering
	Pair programming
	Information Needs for Developers
	Collaborative Development

	IDE-Integrated Help Finding Tools
	Human Expert Computation

	CODEON
	Stage 1: Making a Request
	User Study: Asking a Good Question
	Codeon Design: Voicing Requests

	Stage 2: Writing a response
	User Study: Response Modalities
	Codeon Design - Response Generation

	Stage 3: Integrating a response
	User Study: Exploring Response Integration
	Codeon Design: Response View & Integration

	Iterative Design of the End-To-End System

	Experimental Setup
	Method
	Hypotheses

	Results
	Overall Performance
	Individual Task Performance
	Interruptions and Parallelization
	Post Interview and Developer Feedback
	Parallelization
	Interruption

	CodeOn for Non-Parallelizable Tasks
	Discussion
	Codeon User Interface
	Effects of Social Norms
	Potential of Codeon
	Generalizing Codeon's Approach

	Limitations and Future Work
	Input Modalities
	New Hiring Models for Expert Crowds
	Team-Based Support of Requests
	Longitudinal Deployment Studies

	Conclusion
	Acknowledgements
	REFERENCES

